Virtual Provider Course Reference Guide

Course Overview

Virtual Provider Course: 20 CME hours across 3 days

Training Manual: Science-Based Clinical Evaluation and Treatment of Diabesity

Structure: 10 Sessions corresponding to 10 Sections

Sponsored by the Diabesity Institute

DAY 1: FOUNDATIONS

SESSION 1: Reframing the Issue

Corresponds to: Section 1 - Developing Awareness of Metabolic Function and Dysfunction

Time: 8:00 - 10:00 AM (2.0 CME credits)

Key Topics Covered:

- Past and present concepts in obesity treatment
- Why metabolic system is underemphasized
- Evidence base for understanding obesity as a metabolic disorder
- Historical perspective on calorie restriction

Most Pertinent References:

- 1. **Friedman J.** (2012). Leading the charge in leptin research: an interview with Jeffrey Friedman. Dis Model Mech. 5(5):576-579.
 - Relevance: Discovery of leptin fundamental to understanding metabolic feedback loop
- 2. **Sumithran P, Prendergast LA, Delbridge E, et al.** (2011). Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 365:1597-1604.
 - *Relevance:* Critical evidence showing hormonal adaptations persist long after calorie restriction ends
- 3. **Bowers CY.** (2012). History to the discovery of ghrelin. Methods Enzymol. 514:3-32. *Relevance:* Understanding orexigenic signals that drive hunger
- 4. **4. Müller TD, Finan B, Clemmensen C, et al.** (2017). The new biology and pharmacology of glucagon. Physiol Rev. 97:721–766.
 - Relevance: Modern understanding of metabolic hormones and therapeutic targets
- 5. **Kumar N, Puri N, Marotta F, et al.** (2017). Diabesity: an epidemic with its causes, prevention and control with special focus on dietary regime. Functional Foods in Health and Disease 2017; 7(1):1-16.

Relevance: Comprehensive overview of the diabesity epidemic

SESSION 2: Diabesity: Medical, Surgical, and Combined Approaches

Corresponds to: Section 2 - Importance of Individualized Decision-Making

Time: 10:30 AM - 12:30 PM (2.0 CME credits)

Key Topics Covered:

- Evidence base for surgical vs. pharmacological treatment
- Types of bariatric surgery
- Post-surgical pharmacological care
- Treatment duration and metabolic rehabilitation

Most Pertinent References:

 1. Bray GA, Frühbeck G, Ryan DH, Wilding JPH. (2016). Management of obesity. Lancet. 387(10031):1947-1956.

Relevance: Comprehensive overview of obesity management approaches

7. 2. **Yumuk V, Tsigos C, Fried M, et al.** (2015). European guidelines for obesity management in adults. Obes Facts. 8:402–424.

Relevance: Guidelines for surgical intervention criteria

8. 3. van Beek AP, Emous M, Laville M, et al. (2017). Dumping syndrome after esophageal, gastric or bariatric surgery: pathophysiology, diagnosis, and management. Obes Rev. 18(1):68–85.

Relevance: Understanding post-surgical complications and management

9. 4. **US Food and Drug Administration.** Safety Alerts for Human Medical Products. Liquid-filled intragastric balloon systems: letter to healthcare providers - potential risks.

Relevance: Safety considerations for endoscopic devices

10. 5. **Westergaard H.** (2007). Bile acid malabsorption. Curr Treat Options Gastroenterol. 10(1):28-33.

Relevance: Post-operative metabolic concerns

SESSION 3: The Metabolic Feedback Loop

Corresponds to: Section 3 - Systemic and Central Influence / Importance of Neuroendocrine Autoregulation

Time: 1:30 - 3:30 PM (2.0 CME credits)

Key Topics Covered:

- Peripheral and central metabolic pathways
- Adipose as endocrine organ
- Gut-brain signaling
- Neuroendocrine autoregulation
- Genetic vulnerability

Most Pertinent References:

11. 1. Myers MG, Heymsfield SB, Haft C, et al. (2012). Defining clinical leptin resistance - challenges and opportunities. Cell Metab. 15(2):150–156.

Relevance: Central to understanding metabolic dysfunction

12. 2. **Toni R.** (2004). The neuroendocrine system: organization and homeostatic role. J Endocrinol Invest. 27(6 Suppl):35-47.

Relevance: Foundational understanding of neuroendocrine signaling

13. 3. **Hayes MR.** (2014). Brain-gut-periphery axis integration: GLP-1 receptor signaling. Trends Endocrinol Metab.

Relevance: Understanding peripheral-central signaling mechanisms

- 14. 4. **Bastard JP, Maachi M, Lagathu C, et al.** (2006). Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 17(1):4-12. *Relevance:* Adipose tissue as active endocrine organ
- 15. 5. **Farooqi IS, O'Rahilly S.** (2008). Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity. Nat Clin Pract Endocrinol Metab. 4(10):569-577. *Relevance:* Genetic vulnerabilities in metabolic pathways
- 16. 6. **Drucker DJ, Habener JF, Holst JJ.** (2017). Discovery, characterization, and clinical development of the glucagon-like peptides. J Clin Invest. 127(12):4217-4227. *Relevance:* GLP-1 pathway critical for understanding incretin-based therapies
- 17. 7. **Trayhurn P, Bing C.** (2006). Appetite and energy balance signals from adipocytes. Phil. Trans. R. Soc. B 361(1471):1237-1249.

Relevance: Adipokine signaling in metabolic regulation

DAY 2: ASSESSMENT & DIAGNOSIS

SESSION 4: Anthropometrics and Metabolic Testing

Corresponds to: Section 4 - Comprehensive Assessment Beyond Traditional Metrics

Time: 8:00 - 10:00 AM (2.0 CME credits)

Key Topics Covered:

- Body composition testing methods
- Lean mass deficits/excesses
- Contributors to metabolic expenditure
- Body-fat percentage guidelines
- Measuring body-fat composition and distribution

Most Pertinent References:

18. 1. Heyward VH. (2014). Advanced Fitness Assessment and Exercise Prescription.

Relevance: Standards for body composition assessment

19. 2. **McArdle WD, Katch FI, Katch VL.** (2009). Exercise Physiology: Nutrition, Energy, and Human Performance.

Relevance: Frame size and anthropometric standards

20. 3. CDC. (2010). Mean percentage body fat by age, sex, and ethnicity.

Relevance: Population norms for body composition

21. 4. **Spalding KL, Arner E, Westermark PO, et al.** (2008). Dynamics of fat cell turnover in humans. Nature. 453(7196):783-787.

Relevance: Understanding adipose tissue dynamics

22. 5. McLaughlin T, Lamendola C, Liu A, et al. (2011). Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab. 96(11):E1756–E1760.

Relevance: Fat distribution and metabolic health

23. 6. **Westerterp KR.** (2004). Diet induced thermogenesis. Nutr Metab (Lond). 1(1):5. *Relevance:* Understanding metabolic expenditure components

24. 7. Cichosz SL, Rasmussen NH, Vestergaard P, Hejlesen O. (2021). Precise Prediction of Total Body Lean and Fat Mass From Anthropometric and Demographic Data: Development and Validation of Neural Network Models. J Diabetes Sci Technol. 15(5):1154-1162.

Relevance: Limitations of predicted lean mass equations in obesity - "In obese participants, the prediction of FM was considerably reduced; this might be due to an increased interpersonal variation of fat distribution and difficulties in the accuracy of obtaining anthropometric measurements in obese people"

SESSION 5: Modern Approach to Diagnosis in Metabolic Dysfunction

Corresponds to: Section 5 - Advanced Diagnostic Frameworks for Personalized Treatment

Time: 10:30 AM - 12:30 PM (2.0 CME credits)

Key Topics Covered:

- TOFI phenotype
- Advanced lipid testing
- Inflammatory markers
- Thyroid, sex hormone, and cortisol assessment
- Nutrient deficiencies in metabolic syndrome

Most Pertinent References:

25. 1. **Després JP.** (2012). Body fat distribution and risk of cardiovascular disease: an update. Circulation. 126(10):1301-1313.

Relevance: TOFI phenotype and metabolic risk

26. 2. Marques-Vidal P, Pécoud A, Hayoz D, et al. (2010). Normal weight obesity: relationship with lipids, glycaemic status, liver enzymes and inflammation. Nutr Metab Cardiovasc Dis. 20(9):669-75.

Relevance: Metabolically unhealthy normal weight individuals

27. 3. Mora S, Wenger NK, Cook NR, et al. (2019). Evaluation of high-density lipoprotein particle number and size by nuclear magnetic resonance for cardiovascular risk assessment. JAMA Cardiol. 4(4):325-332.

Relevance: Advanced lipid testing

28. 4. **Ridker PM, Everett BM, Thuren T, et al.** (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 377(12):1119-1131.

Relevance: Inflammation and cardiovascular risk

29. 5. **Santini F, Marzullo P, Rotondi M, et al.** (2014). Mechanisms in endocrinology: the crosstalk between thyroid gland and adipose tissue. Eur J Endocrinol. 171(4):R137-152. *Relevance:* Thyroid-metabolism interaction

SESSION 6: Pharmacological Strategies for Metabolic Dysfunction

Corresponds to: Section 6 - Pharmacological Interventions and Treatment Algorithms **Time:** 1:30 - 3:30 PM (2.0 CME credits)

Key Topics Covered:

- GLP-1 receptor agonists
- Dual and triple agonists
- Amylin analogs
- Combination therapy rationale
- Treatment algorithms
- Contraindications and side effect management

Most Pertinent References:

30. 1. **Drucker DJ, Habener JF, Holst JJ.** (2017). Discovery, characterization, and clinical development of the glucagon-like peptides. J Clin Invest. 127(12):4217-4227.

Relevance: GLP-1 pathway fundamentals

31. 2. Wilding JPH, Batterham RL, Calanna S, et al. (2021). Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 384:989-1002.

Relevance: Clinical efficacy of GLP-1 receptor agonists

32. 3. **Jastreboff AM, Aronne LJ, Ahmad NN, et al.** (2022). Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 387(3):205-216.

Relevance: Dual agonist clinical data

33. 4. **Garvey WT, Batterham RL, Bhatta M, et al.** (2022). Two-year effects of semaglutide in adults with overweight or obesity: the STEP 5 trial. Nat Med. 28:2083-2091.

Relevance: Long-term efficacy and safety

34. 5. **Tschöp MH, Finan B, Clemmensen C, et al.** (2016). Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab. 24(1):51-62.

Relevance: Multi-agonist therapy rationale

DAY 3: INTEGRATION & APPLICATION

SESSION 7: Nutritional Strategies for Metabolic Health

Corresponds to: Section 7 - Evidence-Based Nutritional Interventions

Time: 8:00 - 10:00 AM (2.0 CME credits)

Key Topics Covered:

- Metabolic flexibility
- Meal timing and frequency
- Macronutrient distribution
- Low-carb vs. calorie restriction
- Fasting strategies
- Protein requirements

Most Pertinent References:

35. 1. **Goodpaster BH, Sparks LM.** (2017). Metabolic flexibility in health and disease. Cell Metab. 25(5):1027-1036.

Relevance: Metabolic flexibility framework

36. 2. **Hall KD, Guo J.** (2017). Obesity energetics: body weight regulation and the effects of diet composition. Gastroenterology. 152(7):1718-1727.

Relevance: Energy balance and diet composition

37. 3. **Gardner CD, Trepanowski JF, Del Gobbo LC, et al.** (2018). Effect of low-fat vs low-carbohydrate diet on 12-month weight loss. JAMA. 319(7):667-679.

Relevance: Diet composition comparison

38. 4. de Cabo R, Mattson MP. (2019). Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 381(26):2541-2551.

Relevance: Intermittent fasting evidence

39. 5. **Phillips SM, Chevalier S, Leidy HJ.** (2016). Protein "requirements" beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab. 41(5):565-572.

Relevance: Protein optimization

SESSION 8: Laboratory Testing and Metabolic Assessment

Corresponds to: Section 8 - Comprehensive Laboratory Evaluation

Time: 10:30 AM - 12:30 PM (2.0 CME credits)

Key Topics Covered:

- Comprehensive metabolic panel interpretation
- Continuous glucose monitoring
- HbA1c limitations
- Insulin testing
- HOMA-IR calculations
- Advanced metabolic markers

Most Pertinent References:

40. 1. American Diabetes Association. (2022). Standards of medical care in diabetes-2022. Diabetes Care. 45(Suppl 1):S1-S264.

Relevance: Current diagnostic criteria

41. 2. **Battelino T, Danne T, Bergenstal RM, et al.** (2019). Clinical targets for continuous glucose monitoring data interpretation. Diabetes Care. 42(8):1593-1603.

Relevance: CGM data interpretation guidelines

42. 3. **Nathan DM, Kuenen J, Borg R, et al.** (2008). Translating the A1C assay into estimated average glucose values. Diabetes Care. 31(8):1473-1478.

Relevance: HbA1c interpretation

43. 4. Wallace TM, Levy JC, Matthews DR. (2004). Use and abuse of HOMA modeling. Diabetes Care. 27(6):1487-1495.

Relevance: HOMA-IR utility and limitations

44. 5. **Beck RW, Bergenstal RM, Cheng P, et al.** (2019). The relationships between time in range, hyperglycemia metrics, and HbA1c. J Diabetes Sci Technol. 13(4):614-626.

Relevance: Time in range vs HbA1c

SESSION 9: Interventions Beyond Diet and Exercise

Corresponds to: Section 9 - Lifestyle Factors and Environmental Influences

Time: Afternoon session (2.0 CME credits)

Key Topics Covered:

- Sleep optimization
- Stress management
- Environmental toxins
- Physical activity beyond exercise
- Circadian rhythm optimization

Most Pertinent References:

Sleep and Circadian Rhythm:

45. 1. **Spiegel K, Leproult R, Van Cauter E.** (1999). Impact of sleep debt on metabolic and endocrine function. Lancet. 354(9188):1435-1439.

Relevance: Foundational sleep-metabolism research

46. 2. **Tasali E, Chapotot F, Wroblewski K, et al.** (2014). The effects of extended bedtimes on sleep duration and food desire in overweight young adults. Appetite. 80:220-224.

Relevance: Sleep extension benefits

47. 3. **Depner CM, Stothard ER, Wright KP Jr.** (2014). Metabolic consequences of sleep and circadian disorders. Curr Diab Rep. 14(7):507.

Relevance: Sleep architecture and metabolic risk

48. 4. **Knutson KL, Van Cauter E.** (2008). Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci. 1129:287-304.

Relevance: Sleep duration recommendations

Stress Management:

49. 5. **Sinha R, Jastreboff AM.** (2013). Stress as a common risk factor for obesity and addiction. Biol Psychiatry. 73(9):827-835.

Relevance: Stress-metabolism interface

- 50. 6. **Goyal M, Singh S, Sibinga EM, et al.** (2014). Meditation programs for psychological stress and well-being: a systematic review and meta-analysis. JAMA Intern Med. 174(3):357-368. *Relevance:* Evidence-based stress interventions
- 51. 7. **Kim HG, Cheon EJ, Bai DS, Lee YH, Koo BH.** (2018). Stress and heart rate variability: a meta-analysis and review of the literature. Psychiatry Investig. 15(3):235-245. *Relevance:* Stress monitoring technology

Environmental Factors:

52. 8. **Grün F, Blumberg B.** (2009). Endocrine disrupters as obesogens. Mol Cell Endocrinol. 304(1-2):19-29.

Relevance: Environmental obesogens

53. 9. **Baillie-Hamilton PF.** (2002). Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 8(2):185-192.

Relevance: Environmental modifications

Physical Activity:

54. 10. **Fletcher GF, Ades PA, Kligfield P, et al.** (2013). Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 128(8):873-934.

Relevance: Exercise guidelines

55. 11. Loucks AB, Thuma JR. (2003). Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 88(1):297-311.

Relevance: Under-fueled exercise risks

SESSION 10: Neuroendocrine Integration and Clinical Management Strategies

Corresponds to: Section 10 - Advanced Clinical Applications and Long-term Management **Time:** Afternoon session (2.0 CME credits)

Key Topics Covered:

- Hypothalamic-pituitary axis integration
- Clinical management strategies for common dysfunctions
- Post-prandial hypoglycemia management
- · Genetic testing applications
- Pharmacological safety monitoring
- Long-term management protocols

Most Pertinent References:

56. 1. Myers MG, Heymsfield SB, Haft C, et al. (2012). Defining clinical leptin resistance - challenges and opportunities. Cell Metab. 15(2):150–156.

Relevance: Leptin signaling dysfunction

- 57. 2. **Farooqi IS, O'Rahilly S.** (2008). Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity. Nat Clin Pract Endocrinol Metab. 4(10):569-577. *Relevance:* Genetic testing applications
- 58. 3. **Stanikova D, Surova M, Buzga M, et al.** (2015). Age of obesity onset in MC4R mutation carriers. Endocr Regul. 49(3):137-40.

Relevance: MC4R mutations and clinical implications

- 59. 4. **Feuillan PP, Ng D, Han JC, et al.** (2011). Patients with Bardet-Biedl Syndrome have hyperleptinemia suggestive of leptin resistance. J Clin Endocrinol Metab. 96(3):E528–E535. *Relevance:* Syndromic obesity management
- 60. 5. **Trevaskis JL, Parkes DG, Roth JD.** (2010). Insights into amylin-leptin synergy. Trends Endocrinol Metab. 21(8):473-9.

Relevance: Multi-modal treatment integration

61. 6. **Sandovala D, Sisley SR.** (2015). Brain GLP-1 and insulin sensitivity. Mol Cell Endocrinol. 418(Pt 1):27–32.

Relevance: Central pathway integration

62. 7. **Varela L and Horvath TL.** (2012). Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 13(12):1079-1086. *Relevance:* Hypothalamic integration mechanisms

Key Cross-Cutting References

These references are fundamental across multiple sessions:

Metabolic Feedback Loop (Sessions 1, 3, 6, 10):

Myers MG, Heymsfield SB, Haft C, et al. (2012). Defining clinical leptin resistance. Cell Metab. 15(2):150–156.

Hayes MR. (2014). Brain-gut-periphery axis integration: GLP-1 receptor signaling.

Hormonal Regulation (Sessions 3, 6, 7, 9):

Holst JJ. (2007). The physiology of glucagon-like peptide 1. Physiol Rev. 87(4):1409-1439. **Kojima M.** (2010). Discovery of ghrelin and its physiological function. J Med Sci. 3(2):92-95.

Clinical Assessment (Sessions 4, 5, 8):

American Diabetes Association. (2022). Standards of medical care in diabetes-2022. Battelino T, Danne T, Bergenstal RM, et al. (2019). CGM data interpretation guidelines.

Lifestyle Interventions (Sessions 7, 9):

Goodpaster BH, Sparks LM. (2017). Metabolic flexibility in health and disease. Cell Metab. 25(5):1027-1036.

Spiegel K, Leproult R, Van Cauter E. (1999). Impact of sleep debt on metabolic and endocrine function.

Metabolic Adaptation (Sessions 1, 3, 6, 7):

Fothergill E, Guo J, Howard L, et al. (2016). Persistent metabolic adaptation 6 years after "The Biggest Loser" competition. Obesity. 24(8):1612-1619.

Relevance: RMR remained ~500 kcal/d lower than expected 6 years post-weight loss, demonstrating long-term metabolic adaptation

Martins C, Roekenes J, Salamati S, et al. (2021). Metabolic adaptation is associated with less weight and fat mass loss in response to low-energy diets. Nutr Metab. 18:60.

Relevance: Individual variation in metabolic adaptation ranges from -337 to +352 kcal/day, significantly impacting weight loss outcomes

Additional Resources

Historical Timeline References

The training manual includes comprehensive timelines showing the evolution of metabolic science from:

- 1700s: Calorimetry invention
- 1921: Insulin discovery
- 1994: Leptin identification
- 1999: Ghrelin isolation
- 2016-2017: Multi-agonist clinical trials

Emerging Therapies to Monitor

- 1. Cagrisema (Amylin/GLP-1 Co-Agonist)
- 2. Retatrutide (GLP-1/GIP/Glucagon Tri-Agonist)
- 3. Survodutide (GLP-1/Glucagon Dual Agonist)
- 4. Maritide (GIP antagonist)
- 5. Bremelanotide-GLP1 (dual Mc4R-GLP agonist)

Additional References Related to Q&A Session Discussion

These references address specific questions and topics raised during course Q&A sessions:

GLP-1 Receptor Agonists and Body Composition

Jeromson S, Baranowski BJ, Waters BD, et al. (2025). Semaglutide impacts skeletal muscle to a similar extent as caloric restriction in mice with diet-induced obesity. J Physiol. 603(10):2123-2145.

Relevance: Pair-feeding study demonstrating that semaglutide-induced lean mass loss largely reflects caloric restriction rather than a unique pharmacological effect; weight loss was greater with semaglutide than caloric restriction despite matched energy intake

Pediatric ADHD Medication and Potential Future Metabolic Effects

Schwartz BS, Bailey-Davis L, Bandeen-Roche K, et al. (2014). Attention Deficit Disorder, Stimulant Use, and Childhood Body Mass Index Trajectory. Pediatrics. 133(4):668-676.

Relevance: Large longitudinal study showing initial BMI growth suppression with stimulant medications followed by rebound

Link: https://pmc.ncbi.nlm.nih.gov/articles/PMC3966507/

Hasanpour Asli S, Shoar Y, Eslamdoust-Siahestalkhi F, et al. (2024). Body Mass Index Changes in Children and Adolescents Treated with Methylphenidate for Attention Deficit Hyperactivity Disorder. Iranian Journal of Child Neurology. 18(2):67-76.

Relevance: Demonstrates increased BMI with longer duration of methylphenidate treatment in pediatric populations

Link: https://pmc.ncbi.nlm.nih.gov/articles/PMC11015723/